Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
Technical Paper

Alternative Fuel Transit Bus Evaluation Program Results

1996-05-01
961082
The objective of this program, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide an unbiased and comprehensive comparison of transit buses operating on alternative fuels and diesel fuel. The information for this comparison was collected from eight transit bus sites. The fuels studied are natural gas (CNG and LNG), alcohol (methanol and ethanol), biodiesel (20 percent blend), propane (only projected capital costs; no sites with heavy-duty propane engines were available for studying operating experience), and diesel. Data was collected on operations, maintenance, bus equipment configurations, emissions, bus duty cycle, and safety incidents. Representative and actual capital costs were collected for alternative fuels and were used as estimates for conversion costs. This paper presents preliminary results.
Technical Paper

Examination of a Heavy Heavy-Duty Diesel Truck Chassis Dynamometer Schedule

2004-10-25
2004-01-2904
Repeatable measurement of real-world heavy-duty diesel truck emissions requires the use of a chassis dynamometer with a test schedule that reasonably represents actual truck use. A new Heavy Heavy-Duty Diesel Truck (HHDDT) schedule has been created that consists of four modes, termed Idle, Creep, Transient and Cruise. The effect of driving style on emissions from the Transient Mode was studied by driving a 400 hp Mack tractor at 56,000 lbs. test weight in fashions termed “Medium”, “Good”, “Bad”, “Casual” and “Aggressive”. Although there were noticeable differences in the actual speed vs. time trace for these five styles, emissions of the important species oxides of nitrogen (NOx) and particulate matter (PM), varied little with a coefficient of variation (COV) of 5.13% on NOX and 10.68% on PM. Typical NOx values for the HHDDT Transient mode ranged from 19.9 g/mile to 22.75 g/mile. The Transient mode which was the most difficult mode to drive, proved to be repeatable.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Impact of Vehicle Weight on Truck Behavior and Emissions, using On-Board Measurement

2005-10-24
2005-01-3788
On-board emissions measurement for heavy-duty vehicles has taken on greater significance because new standards now address in-use emissions levels in the USA. Emissions compliance must be shown in a “Not-to-exceed” (NTE) zone that excludes engine operation at low power. An over-the-road 1996 Peterbilt tractor was instrumented with the West Virginia University Mobile Emissions Measurement System (MEMS). The researchers determined how often the truck entered the NTE, and the emissions from the vehicle, as it was driven over different routes and at different test weights (20,740 lb, 34,640 lb, 61,520 lb, and 79,700 lb) The MEMS interfaced with the truck ECU, while also measuring exhaust flowrate, and concentrations of carbon dioxide (CO2) and oxides of nitrogen (NOx) in the exhaust. The four test routes that were employed included varying terrain types in order to simulate a wide range of on-road driving conditions. One route (called the Bruceton route) included a sustained hill climb.
Technical Paper

Multidimensional Correlation Study Using Linear Regression of PM and NOX for Heavy Duty Diesel Vehicles

2005-04-11
2005-01-1618
When heavy-duty truck emissions rates are expressed in distance-specific units (such as g/mile), average speed and the degree of transient behavior of the vehicle activity can affect the emissions rate. Previous one-dimensional studies have shown some correlation of distance-specific emissions rates between cycles. This paper reviews emissions data sets from the 5-mode CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Schedule, the Heavy Duty Urban Dynamometer Driving Schedule (UDDS) and an inspection and maintenance cycle, known as the AC5080. A heavy-duty chassis dynamometer was used for emissions characterization along with a full-scale dilution tunnel. The vehicle test weights were simulated at 56,000 lbs. Two-dimensional correlations were used to predict the emissions rate on one mode or cycle from the rates of two other modes or cycles.
Technical Paper

An Investigation into the Emissions Reduction Performance of an SCR System Over Two Years' In-Use Heavy-Duty Vehicle Operation

2005-04-11
2005-01-1861
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

Assessment of NOx Destruction in Diesel Engines by Injecting NO in the Intake Manifold

2005-04-11
2005-01-0370
Emissions from diesel engines, particularly NOx and TPM emissions are harmful to the environment. Reduction of NOx emissions from diesel engines is of increasing concern. In 1998, a novel approach called Selective NOx Recirculation (SNR) was used to reduce NOx emissions in diesel engines. The SNR concept relies on two major parts, one to collect the NOx emissions from the exhaust by an adsorber, and another to decompose NOx using the in-cylinder combustion process by injecting the collected NOx emissions into the intake manifold at an elevated concentration. This paper deals with the destruction rates during the combustion process. A 1992 DDC series 60, 350 hp, 12.7 liter engine was connected to a 500 hp DC dynamometer. A full-scale dilution tunnel and analyzers capable of measuring continuous NOx, CO2, CO, HC, and PM in the exhaust were used.
Technical Paper

Nitric Oxide Conversion in a Spark Ignited Natural Gas Engine

2005-04-11
2005-01-0234
Understanding the nitric oxide (NO) conversion process plays a major role in optimizing the Selective NOX Recirculation (SNR) technique. SNR has been proven in gasoline and diesel engines, with up to 90% NOX conversion rates being achieved. This technique involves adsorbing NOX from an exhaust stream, then selectively desorbing the NOX into a concentrated NOX stream, which is fed back into the engine's intake, thereby converting a percentage of the concentrated NOX stream into harmless gases. The emphasis of this paper is on the unique chemical kinetic modeling problem that occurs with high concentrations of NOX in the intake air of a spark ignited natural gas engine with SNR. CHEMKIN, a chemical kinetic solver software package, was used to perform the reaction modeling. A closed homogeneous batch reactor model was used to model the fraction of NOX versus time for varying initial conditions and constants.
Technical Paper

Experimental Investigation of the Heat Release Rate in a Sinusoidal Spark Ignition Engine

1989-02-01
890778
Compression and power stroke cycles for a 4 stroke cycle spark ignition engine modified by extending the connecting rod to simulate purely sinusoidal piston motion are analyzed over a range of operating speeds and are compared with those of a similar conventional engine. Heat release rate is estimated for both engines using a simple Wiebe function with the functional parameters found via a simplex curve fitting method used in conjunction with experimental pressure curves. It is shown that the functional parameters which represent the combustion and the duration of fuel burn are slightly larger over the range of operation in the sinusoidal engine while the shape factor remains largely the same. However, the pressure-crank angle curves are sufficiently similar such that conventional slider-crank curves can be used to model sinusoidal engines, which was the motivation behind this research.
Technical Paper

Potential Applications of the Stiller-Smith Mechanism in internal Combustion Engine Designs

1987-11-08
871225
With few exceptions most internal combustion engines use a slider-crank mechanism to convert reciprocating piston motion into a usable rotational output. One such exception is the Stiller-Smith Mechanism which utilizes a kinematic inversion of a Scotch yoke called an elliptic trammel. The device uses rigid connecting rods and a floating/eccentric gear train for motion conversion and force transmission. The mechanism exhibits advantages over the slider-crank for application in internal combustion engines in areas such as balancing, size, thermal efficiency, and low heat rejection. An overview of potential advantages of an engine utilizing the Stiller-Smith Mechanism is presented.
Technical Paper

Thermodynamic implications of the Stiller-Smith Mechanism

1987-02-01
870615
The Stiller-Smith mechanism is a new mechanism for the translation of linear motion into rotary motion, and has been considered as an alternative to the conventional slider-crank mechanism in the design of internal combustion engines and piston compressors. Piston motion differs between the two mechanisms, being perfectly sinusoidal for the Stiller-Smith case. Plots of dimensionless volume and volume rate-change are presented for one engine cycle. It is argued that the different motion is important when considering rate-based processes such as heat transfer to a cylinder wall and chemical kinetics during combustion. This paper also addresses the fact that a Stiller-Smith engine will be easier to configure for adiabatic operation, with many attendant benefits.
Technical Paper

Demonstration of Caterpillar C10 Dual Fuel Natural Gas Engines in Commuter Buses

2000-03-06
2000-01-1386
Optimized 1997 model year Caterpillar C10 dual-fuel natural gas engines certified to the California Air Resources Board's Alternative Low NOx 2.5 gram/brake horsepower-hour emission standard were demonstrated in three commuter buses over a 12-month period, in Santa Barbara, California. The project evaluated the retrofit costs and process, performance, reliability, fuel economy, operating costs, and emissions of the three C-10 dual-fuel natural gas engines compared to a standard C-10 diesel engine. Chassis dynamometer tests using the U.S. EPA Urban Dynamometer Drive Schedule, the Central Business District (West Virginia University version) and the 55-mph Steady State cycles were conducted to characterize in-use emissions of the dual-fuel engines for the commuter bus application. During 94,000 combined service miles, performance, reliability and durability of the dual fuel buses were similar to the diesel control.
Technical Paper

Hybrid Diesel-Electric Heavy Duty Bus Emissions: Benefits Of Regeneration And Need For State Of Charge Correction

2000-10-16
2000-01-2955
Hybrid diesel electric buses offer the advantage of superior fuel economy through use of regenerative braking and lowered transient emissions by reducing the need of the engine to follow load as closely as in a conventional bus. With the support of the Department of Energy (DOE), five Lockheed Martin-Orion hybrid diesel-electric buses were operated on the West Virginia University Transportable Laboratory in Brooklyn, New York. The buses were exercised through a new cycle, termed the Manhattan cycle, that was representative of today's bus use as well as the accepted Central Business District Cycle and New York Bus Cycle. Emissions data were corrected for the state of charge of the batteries. The emissions can be expressed in units of grams/mile, grams/axle hp-hr and grams/gallon fuel. The role of improved fuel economy in reducing oxides of nitrogen relative to conventional automatic buses is evident in the data.
Technical Paper

Chassis Dynamometer Emission Measurements from Trucks and Buses using Dual-Fuel Natural Gas Engines

1999-10-25
1999-01-3525
Emissions from trucks and buses equipped with Caterpillar dual-fuel natural gas (DFNG) engines were measured at two chassis dynamometer facilities: the West Virginia University (WVU) Transportable Emissions Laboratory and the Los Angeles Metropolitan Transportation Authority (LA MTA). Emissions were measured over four different driving cycles. The average emissions from the trucks and buses using DFNG engines operating in dual-fuel mode showed the same trends in all tests - reduced oxides of nitrogen (NOx) and particulate matter (PM) emissions and increased hydrocarbon and carbon monoxide (CO) emissions - when compared to similar diesel trucks and buses. The extent of NOx reduction was dependent on the type of test cycle used.
Technical Paper

Interim Results from Alternative Fuel Truck Evaluation Project

1999-05-03
1999-01-1505
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

In-Cylinder Combustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuels in a Heavy Duty CI Engine

1999-05-03
1999-01-1472
The emissions reduction benefits of Fischer-Tropsch (FT) diesel fuel have been shown in several recent published studies in both engine testing and in-use vehicle testing. FT diesel fuel shows significant advantages in reducing regulated engine emissions over conventional diesel fuel primarily to: its zero sulfur specification, implying reduced particulate matter (PM) emissions, its relatively lower aromaticity, and its relatively high cetane rating. However, the actual effect of FT diesel formulation on the in-cylinder combustion characteristics of unmodified modern heavy-duty diesel engines is not well documented. As a result, a Navistar T444E (V8, 7.3 liter) engine, instrumented for in-cylinder pressure measurement, was installed on an engine dynamometer and subjected to steady-state emissions measurement using both conventional Federal low sulfur pump diesel and a natural gas-derived FT fuel.
X